欧几里得算法,即辗转相除法,用于求整数a,b的最大公约数。
欧几里得算法C++实现代码:(无需确定 a,b 大小关系)
|
扩展欧几里得算法:设a和b不全为0,则存在整数x和y,使得 gcd(a,b) = xa + yb
证明: 假设 a>b
当 b==0 时:gcd(a,b) = a , 此时 x=1 , y=0
当 ab!=0时:
设: x1a + y1b = gcd(a,b)
x2b + y2(a%b) = gcd(b,a%b)
因为 gcd(a,b) == gcd(b,a%b)
所以 x1a + y1b = x2b + y2(a%b) = x2b + y2(a-a/bb) =y2a + x2b - y2(a/b)\b
因此 x1 = y2 , y1 = x2-(a/b)y2
这样就能够基于 x2, y2 求出 x1 , y1 的解。
扩展欧几里得C++实现代码 01:
|
扩展欧几里得C++实现代码 02:
|